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Abstract: This paper seeks to address the phase synchronization phenomenon using the drive-response concept, 

in our proposed model, State Controlled Cellular Neural Network (SC-CNN) based on variant of Murali-

Lakshmanan-Chua (MLCV) circuit. Using this unidirectionally coupled chaotic non autonomous circuits, we 

described the transition of unsynchronous to synchronous state, by numerical simulation method as well as the 

results are confirmed by solving explicit analytical solution. In this aspect, the system undergoes the new effect 

of phase synchronization (PS) phenomenon have been observed before complete synchronization (CS) state. To 

characterize these phenomena by the phase portraits and the time series plots. Also particularly characterize for 

PS by the method of partial Poincare section map using phase difference versus time, numerically and 

analytically. The study of dynamics involved in SC-CNN circuit systems, mainly applicable in the field of 

neurosciences and in telecommunication fields. 
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Introduction 

Synchronization of chaotic dynamical systems is a process wherein two chaotic systems are coupled 

each other may synchronize to a common chaotic trajectory. The chaotic system is unpredictable, due 

to sensitive initial conditions, it diverge exponentially until they become completely uncorrelated 

(Pecora et al, 1990). Chaos synchronization is an important role play in the complex dynamical 

behavior in research communities because it traces the advances in secure communication systems 

(Boccaletti et al, 2002). Also, there are different kinds of networks, such as unidirectional networks, 

bidirectional networks, random networks, small-world networks and so on (Venkkatesh et al, 2016). 

In the context of chaos synchronization state have been studied in various methods incidentally, such 

as phase synchronization (PS) (Rosenblum et al, 1996, Parlitz et al, 1996), lag synchronization (LS), 

generalized synchronization, intermittent lag synchronization (ILS), imperfect phase synchronization 
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(IPS) (Antonio Pujol-Pere et al, 2003), complete or identical synchronization (CS) and almost 

synchronization (AS) (Murali et al, 1996), (Srinivasan et al, 2016). 

In this context, we proposed a chaotic nonidentical coupled nonautonomous circuits based on the 

ideas of Cellular Neural/nonlinear Network (CNN), which is an array of simple, interconnected 

nonlinear first order dynamical circuits, called cells introduced by Chua and Yang (Chua et al, 1988),. 

The main generalizations of CNN consist of direct dependence on neighborhood cells, named as State 

Controlled Cellular Neural Network (SC-CNNs). Basically, CNN consists of the most complex 

architecture, where analog has been converted by digital logic sections with low power consumption. 

This SC-CNN cell constitutes a second-order nonlinear circuit that, isolated from its local 

connectivity of cells and a fundamental simplicity. The feature of our proposed model is for 

implemented in many practical problems related to neural networks and generating several chaotic 

circuits, particularly suitable for image processing and spatial pattern formation (Arena et al, 1995). 

According to this aspect, the proposed chaotic nonidentical coupled nonautonomous circuits of 

dynamical system, is a simple forced parallel LCR circuit or named as variant of Murali-Lakshmanan-

Chua (MLCV) circuit with the nonlinear element, Chua’s diode, introduced by Thamilmaran 

(Thamilmaran et al, 2002), in the process of SC-CNN, showing routes to chaos, including periodic 

and aperiodic in nature (Gunay et al, 2010, Swathy et al, 2014). Among all these phenomena, our 

proposed chaotic systems are unidirectionally coupled, i.e., drive-response configuration. This shows 

that, the dynamics of the response system is to follow the dynamics of the drive system, while by 

increasing the strength of the coupling parameter, the systems transits from asynchronization to PS 

and then CS. 

In this report, we focus mainly on the study of phase synchronization (PS) phenomenon using the 

generalized SC-CNN equation based MLCV circuit under unidirectionally coupled, by numerical 

simulation result and by an explicit analytical solution (Raissi et al, 2019). For the case of chaotic 

nonautonomous oscillator, the phase synchronization (PS) phenomenon originally introduced by 

Pikovsky (Rosenblum et al, 1996). This phase analysis concept has been successfully applied in 

biological neuron activities, cardiorespiratory system, optical topography and so on (Qingying Mino 

et al, 2009). 

This paper is divided into five sections. In section 1, we present an introduction of this paper and in 

section 2, describe about the chaotic system of SC-CNN based MLCV. In section 3, gives the 

numerical results of phase and complete synchronization phenomena. An explicit analytical solution 

of generalized equations of our proposed model were carried out in section 4, and the final section 5, 

deals with conclusions. 
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Chaotic system description of SC-CNN based MLCV circuit 

This paper describes the dynamics of unidirectionally coupled chaotic nonidentical systems. In this 

connection, we draw on MLCV circuit presents a new approach to consider as a CNN structure of 

interconnected unit cells (Swathy et al, 2014, Chua et al, 1988).  The SC-CNN described by the state 

equations (Arena et al, 1995):  

(1) 

Here . 

where j is the cell index, is the state variable. Using this state equations, we execute into two CNN 

cell as a first order differential equation based on MLCV circuit (Thamilmaran et al, 2000). We 

undertook this study to describe the synchronization of chaos in different methodology. 

Numerical Simulation Results 

Chaos synchronization of a coupled oscillator is a universal phenomenon that deals in science and 

engineering. Using coupling term, ε of two nonautonomous self-sustained oscillators are set to 

interact. In this proposed model, SC-CNN based MLCV circuit equations of the drive and response 

systems are non-identical, by keeping, mismatch frequencies, (ω1 and ω2) and an initial conditions, 

( , ), so that they give rise to different chaotic attractors when the coupling parameter, 

ε is zero. Hence the two systems are naturally unsynchronized. Using Kirchhoff’s law, the MLCV 

circuit equation can be written in the generalized SC-CNN equations has for the drive and the 

response system as shown below: 

Drive system, 

 

     (2) 

Response system,  

 

     (3) 

Where and  are the output related to the state by the nonlinear equation,  

 

Also, we fixed the system parameters such as,  = 0.6053,  = 0.6047,  = −1.000,  = 0.050, 

 = 1.000 and  = 0.105,  = 0.411 and  = 0.415f1=0.411, f2=0.415 and the initial conditions 

are fixed for the two systems as,  = −0.5;  = 0.1;  = 0.5 and = −0.11. (Swathy et al, 

2014). 
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Therefore, Fig. (1) shows the chaotic attractors for the drive and the response systems in ( − ) and 

( − ) phase planes respectively, for ε=0.0. As the coupling parameter, ε is increased for a fixed 

mismatch frequency, (ω1 and ω2) and an initial condition ( , ), we observe the 

dynamics of an output undergoes unsynchronized state to synchronized state in the range between 0.0 

≥ ε≤2.0. When the coupling parameter, increases gradually, then the dynamics of the drive is 

unaffected because of unidirectional coupling, only the response system varies according to the 

coupling parameter, ε. So that the chaotic attractor changes from the unsynchronized state to 

synchronized state of the drive and the response systems are shown in Fig. (2). In Fig. 2(a) and Fig. 

2(b) shows the chaotic unsynchronized state of the drive and response systems in the ( − ) phase 

space and their corresponding trajectory plot for ε=0. In Fig. 2(c) and Fig. 2(d), the chaotic 

synchronized state of the drive and response systems in the ( − ) phase plane and the 

corresponding trajectory plot forε=1.0. 

 

 

Figure 1: The frequency of the drive system is fixed as 0.411 (Red attractor), whereas the frequency 

of the response system is fixed as 0.415 (Blue attractor). Both the systems are fixed as non-identical 

chaotic attractors. 

However, the proposed chaotic systems are non-identical, the drive and the response systems undergo 

phase synchronization (PS) in their dynamics, as the coupling parameter increases, which tends to a 

perfect matching of their phases, while the phase difference, ∆φ occurs in a random-walk type motion. 

So that, the phases of the response system φ2, initially out of phase with the phases of the drive system 

φ1 for small values ofε, but synchronizes in phase with the drive for the value of coupling parameter,ε. 

In these aspects, we study the PS phenomenon, using Runge-Kutta 4th order for numerical simulation 

algorithm having step size, h=0.1 and by varying the control parameter exhibited coupled SC-CNN 

based MLCV circuit by unidirectionally. To characterize PS phenomenon by phase portrait in the 

−  phase planes and the trajectories plot for (t, ) as shown in Fig. 3(a) and Fig. 3(b). 

 

https://doi.org/10.51220/jmr.v16i2.33
http://jmr.sharadpauri.org/


J. Mountain Res. P-ISSN: 0974-3030, E-ISSN: 2582-5011  DOI: https://doi.org/10.51220/jmr.v16i2.33 

Vol. 16(2) Special Issue ICRAMS-2021, (2021), 265-277 
   

 

©SHARAD   269            http://jmr.sharadpauri.org 

 

Figure 2: The phase space and their time series plot of an unsynchronized state of the two systems, 

shown in figs. 2(a) and 2(b), ε= 0.0. For the synchronized state, shown in fig. 2(c) and 2(d), for ε=1.0. 

 

 

Figure 3: Phase synchronization occurs atε=0.035, corresponding phase portrait(fig(3a)) and time 

series plot (fig(3b)). 

 

Further, for the confirmation of PS, we characterize by using Poincare section in a proper way, such 

that for each rotation, the 2π phase increases, using the formula, 

 (4)  

Where tn is the time of the nth crossing of the secant surface. For the numerical simulation results of 

the two systems are completely locked for the coupling strength ε=0.0048, as shown in Fig. (4). 
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Figure 4: Phase synchronization occurs at ε= 0.035 (blue line), from an analytical result, inwhich 

phase difference is in constant. Imperfect phase synchronization also shown for ε= 0.0028 (magenta 

line) and ε= 0.048 (green line). 

 

From the figure, we have obtained PS, while the phase differences do not grow with time ie., ∆φ = 0. 

This numerical simulation result has further strengthened by analyzing analytically, as follows: 

 

Explicit Analytical Results 

To exemplify the dynamical behavior analytically, by combining the drive and the response system 

equations (2) and (3), form a difference equation, by considering  = ( ;  = ( ) ; 

 = ( ) as follows: 

 

                                                                                (5) 

Where  

Here,  represents the nonlinear term, considered as the three piecewise linear regions , as per 

CNN model. By fixing coupling parameter, ε= 0, then the state variables (t) and (t) has an 

explicit analytical solution and considered as the unsynchronized state. 

For an analytical solution, the frequencies of the two systems are fixed as chaotic attractors (0.411 for 

drive system and 0.415 for response system), as shown in Fig. (5). 
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Figure 5: The frequency of the drive system is fixed as 0.411 (Red attractor), whereas the frequency 

of the response system is fixed as 0.415 (Blue attractor). Both the systems are fixed as non-identical 

chaotic attractors. 

 

Now, by changing the coupling parameter, i.e., (ε>0), then the coupled system reaches the 

synchronized state. Hence, the solution for the difference equations in two different cases for each of 

three piecewise linear regions , as follows: For region, when the coupling parameter, 

ε=0.56821, then the roots become complex conjugate, an explicit analytical solution for the state 

variables (t) and (t) are, 

  

 

   (6) 

 

  

Here , , , are called as arbitrary constants and are combination/integration constants, 

which can be calculated by keeping the initial conditions  and at time t0. Thus, and can be 

obtained as, 

https://doi.org/10.51220/jmr.v16i2.33
http://jmr.sharadpauri.org/


J. Mountain Res. P-ISSN: 0974-3030, E-ISSN: 2582-5011  DOI: https://doi.org/10.51220/jmr.v16i2.33 

Vol. 16(2) Special Issue ICRAMS-2021, (2021), 265-277 
   

 

©SHARAD   272            http://jmr.sharadpauri.org 

 

 

 

 

Using eqns. (6) and (7), we can calculate (t) and (t) using the relations  

; and forε ≥ 0.56821, then the rootsare real and distinct. Therefore, the 

general solution becomes, 

  

(8) 

 

 

 

 

       (9) 

The constants and can be evaluated by solving the eqn. (5) at time t0. 

 (10) 

https://doi.org/10.51220/jmr.v16i2.33
http://jmr.sharadpauri.org/


J. Mountain Res. P-ISSN: 0974-3030, E-ISSN: 2582-5011  DOI: https://doi.org/10.51220/jmr.v16i2.33 

Vol. 16(2) Special Issue ICRAMS-2021, (2021), 265-277 
   

 

©SHARAD   273            http://jmr.sharadpauri.org 

 (11) 

Using the above equations, we can calculate (t) and (t).  For regions, the nonlinearity 

function is taken as 1. Hence the generalized equations are obtained as, 

                              (12) 

                                                                      (13) 

Forε< 0.05191, 

 

                   (14) 

 

The constants , , , in region, are the same as the constants , , , , except that the 

constants A & B are renew with C & D respectively. 

 

 

 

 (15) 

The constants and are the same as and in case (i) of  region except that the constants , 

, , are replaced with the constants , , , respectively. From the results 

of ,we can evaluate (t) and (t). 

For ε ≥ 0.05191,the roots are real and distinct. Then the general solution can be written as, 

  

        (16) 

where and are the integration constants and the constants , , , are the same as for 

region. 
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    (17) 

The constants and are the same as and  of except that the constants , , , are 

changes as , , , respectively. From the results, we can evaluate (t) and (t)(Shameem 

Banu et al, 2018). 

From the above aspects of the three regions ,   and solutions, we can generate the 

characteristics, such as phase portraits, time series plot and Poincare section map. Using this 

remarkable result to emerge from the data for a particular value of coupling parameter, εto get an 

unsynchronized state, phase synchronization and a chaotic synchronized state. These characteristics 

revealed in Fig. (6). For an unsynchronized state (fig. 6(a) and fig. 6(b), ε=0.0, so that the two 

systems, drive and response are not coupled, acts as an independent system, whereas for the chaotic 

synchronized state (fig.6(c) and fig. 6(d)) for ε=3.2. 

 

Figure 6: The phase space and their time series plot from an analytical result, for an unsynchronized 

state of the two systems, shown in figs. 6(a) and 6(b), ε=0.0. For the synchronized state, shown in fig. 

6(c) and 6(d), forε=3.2. 

For the study of phase synchronization phenomena using analytical solution, for the value of ε=1.5, 

the phase portraits and their corresponding time trajectories are shown in Fig. 7(a) and Fig. 7(b). 
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Figure 7: Phase synchronization occurs at ε=1.5, corresponding phase portrait (fig(7a)) and time series 

plot (fig(7b)). 

 

Also, from the same analytical data applied in the Poincare section formula (Eqn. (4)), is to 

characterize the phase synchronization phenomena analytically, as shown in Fig. (8). 

 

Figure 8: Phase synchronization occurs at ε=1.5 (blue line), from an analytical result, inwhich phase 

difference is in constant. Imperfect phase synchronization also shown for ε=0.5 (magenta line) and 

ε=0.8 (green line). 

 

From the above figure, the PS phenomenon is confirmed by plotting these characteristics, using the 

analytically solved data. The phase difference, ∆φ must be in constant, ie., does not grow with time, in 

analytical results, Fig. (8), which is coincide with the numerical results, as in Fig. (4). 

 

Conclusion 

In this paper, we have presented numerically and an explicit analytical study on unidirectional 

coupled, non-identical two generalized SC-CNN cell equations, based MLCV circuit systems 

exhibiting for the chaotic synchronization phenomena. Especially, our research has highlighted the 

importance of phase synchronization in a chaotic coupled system, in which we have confirmed further 

evidence for the PS using Poincaresectional map for numerical result as well as for an analytical 

result. According to the detection of phase synchronization, in our proposed model, SC-CNN of a 

unidirectional chaotic coupled system, is suitable for the neuron activities and in signal 
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communications. Also, this could be eventually led to the application of nephron-nephron interaction 

in future. 
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